

MICROGRIDS

L.A. AFB V2G PILOT PROJECT

Chris Marnay

Ernest Orlando Lawrence Berkeley National Laboratory

<u>ChrisMarnay@LBL.gov</u> - <u>http://microgrid.lbl.gov/</u>

SANTIAGO 2013 SYMPOSIUM ON MICROGRIDS

Santiago, Chile - Wednesday 11 Sep 2013

Outline

PROJECT OVERVIEW & RELEVANCY

CAISO ANCILLARY SERVICES PROCUREMENT

SOFTWARE DEVELOPMENT

INSTALLATION AT LOS ANGELES AIR FORCE BASE

EXAMPLE FLEET RESULTS

BIDIRECTIONAL PLUG-IN ELECTRIC VEHICLE TECHNOLOGY

PROJECT CHALLENGES

Project Overview

- 6 DoD bases with 500 PEVs announced, including China Lake CA third phase will be 1000 additional vehicles of total non-tactical fleet of ~200,000
 (mostly low usage medium duty vehicles)
- about half L.A. AFB fleet will bid into CAISO Regulation (Aug 2013)
- Three L.A. funding sources:

DOD ~2+ M\$ for vehicles, charging stations, and construction ESTCP ~1.75 M\$ for fleet management, communications, & optimization CEC ~1 M\$ for 10-15 sedans and building integration capability

- first vehicles + EVSEs by Aug 2013
- hoping for a full year of data collection through mid-2014
- key research questions:
 - can an all-electric fleet meet mission requirements can regulation market revenue close PEV cost gap

Why Relevant?

- between PEV-microgrid interaction a likely key component
- PEV batteries valuable storage
- PEV charging-discharging controllable and fast responding
- vehicle to grid (V2G) a precursor to microgrid to megagrid (m-µ2MG)
- controlled microgrids will be participants in ISO markets
- function at scales consistent with current grid practice

CAISO Ancillary Services

CAISO RegU+D Prices (Apr 2009 – Mar 2012)

	Avg	Std Dev	Min	Max
	[\$/MW-h]	[\$/MW-h]	[\$/MW-h]	[\$/MW-h]
Regulation Up	9.13	9.63	0.00	545.27
Regulation Down	6.91	5.63	0.00	79.55
Spinning Reserve	6.61	8.02	0.00	440.92
Non-Spinning reserve	0.97	4.34	0.00	416.33

- A symmetric combined regulation award has an average value of \$16.04/MW-h.
- On average Regulation is about 2.5 times more valuable than Spinning Reserve, and approximately 16 times more valuable than Non-Spinning Reserve.
- MW-h is the unit used for ancillary awards. It is defined as one MW of power capacity held in reserve for one hour (it is not a unit of energy)
- 10-15 k-vehicles could provide all of SoCal's regulation requirement

3 Required Technologies

Santa Rita Jail

Data Machinery

Aerial View of L.A. AFB

L.A. AFB Views

18 Vehicle Test Fleet

EV1-EV6

EV7-EV12

EV13-EV18

Model
Number
Energy Capacity
Max Charge Power
Max Discharge Power

Nissan LEAF
6
24 kWh
15 kW
15 kW

Auto Port Va
6
35 kWh
15 kW
15 kW

Smith Electric Truck		
6		
120 kWh		
60 kW		
60 kW		

Total Energy Capacity
Total Charge Power
Total Discharge Power

1074	kWh
540	kW
540	kW

Minimum	Resource Size
Minimum	Bid
Minimum	Bid Increment

500 kW	
100 kW	
10 kW	

Bidirectional Power

1. Nissan LEAF using CHAdeMO

Leading, Environmentally friendly, Affordable, Family car

2. AC propulsion technology

3. J1772 combo connector

EV Results Summary

Ene	rgy Co	sts (\$)	22.65
Power Costs (\$)		0	
	Up	D1	83.01
Reg	Dn	D1	24.53
Revenue (\$)	Up	D2	85.37
	Dn	D2	24.55
Energy limit (kWh)	High	D1	1039
	Low	D1	214.8
	High	D2	1039
	Low	D2	214.8

Project Challenges

- regulatory barriers
 - need special tariff approval (hybrid wholesale-retail)
 CAISO NGR rules under development
- equipment availability and cost
 bidirectional vehicles and specialized charging stations
 OCPP & CHAdeMO
- security
 cyber security approval
 physical security of vehicles

++++++++

- CAISO minimums
 - > additional vehicles
 - > charging-discharging control
- diversity of equipment
- CHAdeMO & OCPP support TARDEC requirements
- cyber security
- general contracting issues, e.g. CEC title, 14th LEAF, etc.
- THIS IS AN R&D PROJECT

Thank you!

http://microgrid.lbl.gov/

